

GPfu DNA Polymerase (Recombinant) # G7122A 500 Units (1U/µl)

Store at -20°C

Spin tubes briefly before use

Catalogue Number	Pack Size	Ø
G7122	100 Units	
G7122A	500 Units	\checkmark

Package information

G7122	G7122A
100 Lipit	5 X 100
	Unit
(1 X 625 μl)	(5 X 625 μl)
(1 X 625 μl)	(5 X 625 μl)
10 µl	10 µl
10 µl	10 µl
	G7122 100 Unit (1 X 625 μl) (1 X 625 μl) 10 μl 10 μl

Introduction

GPfu DNA Polymerase is a highly purified thermostable DNA polymerase from the hyperthermophilic archaeum Pyrococcus furiosus. This GPfu DNA Polymerase (recombinant) is the pol gene from Pyrococcus furiosus – cloned and expressed in bacteria. The enzyme catalyzes the template-dependent polymerization of nucleotides into duplex DNA in the 5' \rightarrow 3' direction. Prime Pfu DNA Polymerase exhibits 3' \rightarrow 5' exonuclease (proofreading) activity that enables the polymerase to correct nucleotide incorporation errors. It has no 5' \rightarrow 3' exonuclease activity. Amplify upto 4kb.

Applications

- High fidelity PCR.
- Generation of PCR products for cloning and expression.
- RT-PCR for cDNA cloning and expression.
- Generation of PCR product for blunt-end cloning.
- Site-directed mutagenesis.

Storage Buffer

The enzyme is supplied in: 20mM Tris-HCl (pH 8.2), 1mM DTT, 0.1mM EDTA, 100mM KCl, 0.1%(v/v) Nonidet P40, 0.1%(v/v) Tween 20 and 50%(v/v) glycerol.

Protocol

Prepare a PCR master mix by mixing water, buffer, dNTPs, primers and template DNA. GPfu DNA polymerase should be the last component to add. Prepare sufficient master mix for the number of reactions plus one extra to avoid pipetting error.

1. Gently vortex and briefly centrifuge all solutions after thawing except GPfu Polymerase.

2. Place a thin-walled PCR tube on ice and add the following components for each 50 μ l reaction:

Component	Sample	Control
Water, Nuclease free	Up to 50µl	36µl
10X G <i>Pfu</i> Buffer	5µl	5µl
45mM MgCl₂	5µl	5µl
10mM dNTP mix	1µl	1μl
Forward Primer	1µl	1μl from
(10µM)		the primer
Reverse Primer	1µl	mix
(10µM)		
Template DNA	5pg-800ng (varies with complexity)	1µl
GPfu DNA	1-2µl	1μl (1U)
Polymerase	·	
Total Volume	50µl	50µl

3. Gently vortex the samples and spin down.

4. If using a thermal cycler that does not use a heated lid, overlay the reaction mixture with 25 μl of mineral oil.

5. Perform PCR using the following thermal cycling conditions:

Table 2. Cycling Instructions

Cycle step	2-step Protocol		Cycles
	Temp.	Time	
Initial Denaturation	94ºC	5min	1
Denaturation	94ºC	15-30sec	
Annealing	Tm	15-60sec	25 35
Extension	68ºC-	60coc/1kb	20-00
	72ºC	00560/160	
Final extension	68ºC	5-15 min	1

Cycling Parameters

Step	Temperature (°C)	Time	No. of Cycles
Initial denaturation	94	1-3 min (3 min for Control PCR)	1
Denaturation	94	30 sec	25-35
Annealing	T _m -5 (57°C for control PCR)	30 sec	_
Extension	68	2 min/kb	-
Final extension	68	5-15 min	1

* A 2kb band will be obtained for control PCR.

Notice

- 1. If the GC content of the template is 50% or less, an initial 1-3 min denaturation at 94°C is sufficient. For GC-rich templates this step should be prolonged up to 10 min.
- A DNA denaturation time of 30 seconds per cycle at 94°C is normally sufficient. For GC-rich DNA templates, this step can be prolonged to 3-4 min.
- Annealing for 15 seconds is normally sufficient. If non-specific or no PCR products appear, the annealing temperature should be optimized.
- 4. The optimal extension temperature for GPfu DNA Polymerase is 68-72°C. The recommended extension step is 2 min/kb at 72°C for PCR products up to 4 kb. For larger products, the extension temperature should be 68°C.
- The number of cycles may vary depending on the amount of template DNA in the PCR mixture and the expected PCR product yield. In most cases, 25-35 cycles are sufficient.
- After the last cycle, it is recommended to incubate the PCR mixture at 72°C for PCR products up to 2 kb and for larger products, the temperature should be 68°C for additional 5-15 min to fill-in any possible incomplete reaction products.