

GSure® DOGMA Kit for Plant

One kit for DNA-RNA-Protein Isolation

#GD1002A 20 preparations

Store at Room Temperature

Procedure:

- Take 25mg-30mg of freshly picked plant tissue. Rinse the leaf in RNAZIP properly to remove contaminating RNase.
- Take the collected tissue in a fresh mortar-pestle. (to decontaminate the mortar pestle from RNase, clean the assembly with chloroform before starting the work).
- 3. Add 250ul of the GDGP1 buffer in the mortar. Add 250ul of either Part A or Part B in the mortar.

Note: When performing first time with the GSure® Plant DOGMA Kit, this is advisable to proceed individually with Part A and Part B both. Selection of Part A or Part B will be determined by the experimental outcome.

- 4. Crush the sample using mortar and pestle. Crush vigorously.
- 5. Collect the crushed sample in a microfuge tube.
- 6. Vortex vigorously for once and incubate the tube at 70°C for 15 minutes, vortex the tube after every 3-4 min.
- 7. Centrifuge the sample at maximum speed (10000Xg) for 10 minutes in a table top centrifuge at room temperature.
- 8. Collect 250ul of the clear supernatant in a fresh microfuge tube.
- 9. Add 250µl Buffer GDGP2 with the collected supernatant and mix by inverting the tube 4–6 times.
- 10. Add 350µl Buffer GDGP3 and invert the tube immediately. Mix the buffer by inverting only. **DO NOT VORTEX TO MIX.**
- 11. Take one GMini DNA binding column (white colored) and load the whole solution from step 6 on column.
- 12. Centrifuge for 1 minute at maximum speed (10000Xg) in a table top centrifuge at room temperature.
- Collect the flow through in a fresh 2ml microfuge tube. Do not discard the column, it contains the isolated DNA.
- 14. Add 600ul isopropanol in the collected flowthrough. Mix by inverting the tube several times.
- 15. Apply 600ul of the isopropanol-added flowthrough in GMini Chrom-Column (Column specified for RNA binding) by pipetting.
- 16. Centrifuge at 10000xg for 30–60 s. Collect the flow through in a fresh 1.5ml microfuge tube. Do not discard the column, it contains the isolated RNA.
- 17. Apply remaining 600ul of the isopropanol-added flowthrough in same **GMini Chrom-Column (Column specified for RNA binding)** again by pipetting.
- 18. Centrifuge at 10000xg for 30–60 s. Collect the flow through in another fresh 1.5ml microfuge tube. Do not discard the column, it contains the isolated RNA.
- Leave the collected flowthrough at room temperature. This flowthrough could be stored at room temperature for over night. DONOT STORE THE FLOWTHROUGH AT COLD TEMPERATURE.
- 20. Wash both *Gmini DNA binding column and Gmini Chrom-Column* by adding 600μl Membrane Wash Buffer and centrifuging at (10000Xg) for 30–60s. Discard the flow-through.
- 21. Repeat washing step.

22. Discard the flow-through, and centrifuge at 10000Xg, for an additional 2 minutes to remove residual wash buffer from membranes.

This step is extremely important to ensure complete removal of ethanol. Presence of ethanol in purified DNA/RNA may inhibit downstream application.

- 23. Place the *Gmini DNA binding column and Gmini Chrom-Column* in two separate clean 1.5 ml microcentrifuge tubes (not provided). To elute DNA and RNA, add 50 μl Nuclease-free Water to the center of *Gmini DNA binding column and Gmini Chrom-Column*, let stand for 1 minute, and centrifuge for 1 minute at maximum speed (~8500Xg) on a table top microcentrifuge at room temperature.
- 24. Discard the columns and collect the eluted DNA and RNA present in microcentrifuge tubes.
- 25. Now, take any one of the collected flowthrough and add 500ul of deionized water in the tube.
- 26. Add 500ul of chloroform in the same tube.
- 27. Vortex vigorously for 5-10 sec.
- 28. Centrifuge the tube at maximum speed in a table top miocrocentrifuge (~10000xg) for 2min.
- 29. Carefully remove the tube from centrifuge, discard the clear aguous phase (upper phase) by pipetting.

N.B.: At the interphase, a whitish interphase containing protein will be visible. Remove the upper aquous phase by not disturbing the interphase.

- 30. Add 500ul of absolute ethanol (room temperature stored) in the tube and vortex vigorously.
- 31. Centrifuge the tube at maximum speed in a table top miocrocentrifuge (~10000xg) for 2 minutes.
- 32. Discard the supernatant, a whitish protein pellet will form at the bottom of the tube.

Note: Protein pellet forms at the bottom of the tube is very loosly bound, carefully remove the supernatant but not disturbing the pellet.

- 33. Place the protein pellet at 90°C heat block, opening the tube cap. This will evaporate the residual alcohol present in the protein pellet.
- 34. Once the pellet is dried completely, add 20ul of protein resuspension buffer in the tube and vortex vigorously again for 15-30 sec.
- 35. Place the tube in heat block at 90°C for 10 minutes to completely resolubilize the protein pellet.

Note: If require, add 10-20ul more redissolving buffer to dissolve the protein sample. If any sediment found in any of the isolation buffers, warm the containers at 50°C until it dissolves.

Kit Contents:

GDGP1 Buffer : 6ml Part A : 6ml Part B : 6ml **GDGP2 Buffer** : 6ml **GDGP3 Buffer** : 8ml Membrane Wash Buffer : 24ml GMini DNA binding Column : 25 pcs. **GMini Chrom-Column** : 20 pcs. **Nulcease free Water** : 3ml X 2 Protein Resuspension Buffer: 3ml X 2

Reconstitution of Membrane

Wash Buffer:

Before using the kit for first time, add <u>36ml of absolute ethanol (molecular biology grade)</u> with the provided wash buffer. Mix thoroughly by shaking. Once ethanol added, tighten the cap properly after each use.